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ABSTRACT

In response to the comments of Ardhuin et al., the formulation of Mellor has been revised. Solutions of
the model equations are now consistent with known deep-water behavior and agree with the shallow water,
analytical–numerical experiment put forward by Ardhuin et al.

1. Introduction

Mellor (2003, henceforth M03) produced an analysis
providing depth-dependent wave–current interaction
equations that, when vertically integrated, were in
agreement with the depth-integrated equations of
Longuet-Higgins and Stewart (1960, 1964), Phillips
(1977), and others—an encouragement then, but now
considered a consequence of canceling errors. A com-
mentary by Ardhuin et al. (2008, henceforth AJB)
pointed to a discrepancy in M03 for shallow water
(kD ≅ 1, where k is the wavenumber and D is the local
mean water depth) compared with a two-dimensional,
unidirectional case of unforced waves progressing over
a bottom with variable depth. Of greater concern was
my discovery that the M03 formulation and variable
depth produced mean currents even for deep water
(say, kD ≅ 10), a physically unacceptable finding.

2. A revision

The derivation process was revisited and a new for-
mulation is available (ftp://aden.princeton.edu/pub/
glm) that, although containing elements of M03, aban-
dons the a priori use of sigma coordinates; character-
ization of linear irrotational waves derived for a flat
bottom was misinterpreted in the sigma domain. The
new analysis in Cartesian coordinates and here simpli-

fied to two-dimensional, unidirectional, steady flow re-
sulted in the continuity equation
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where

Sxx � ũ ũ � w̃2 � ED. �3�

A modified Dirac delta function is defined such that

ED � 0 if z � �̂ and �
�h

�̂�

ED dz � E�2.

[In a finite difference rendering of ED, the top vertical
layer of incremental size �z (and only the top layer)
would be forced by ED�z � E/2.] The Cartesian coor-
dinates are (x, z), where x is the horizontal coordinate
and z the vertical coordinate, positive upward from the
sea surface; U (current plus Stokes drift) and W are the
corresponding velocities; and ũ, w̃, and p̃ are the instan-
taneous wave velocities and pressure. The overbars
represent phase averaging. The mean sea level is �̂ and
g is the gravity constant.

It is next assumed that the terms in (3) can be evalu-
ated using Airy functions for which, as in M03 and AJB,
it is convenient to define the following terms:
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FSS �
sinhk�z � h�

sinhkD
, FCS �

coshk�z � h�
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,

FSC �
sinhk�z � h�

coshkD
, and FCC �

coshk�z � h�

coshkD
.

Then

�̃ � a cos�, �4a�

�ũ, w̃� �
ga

c
�FCC cos�, FSC sin��, and �4b, c�

p̃ � gaFCC cos�. �4d�

In (4), 	 � kx � 
 t; k and 
 are directional wavenum-
ber and frequency such that 
 � � � kuD, where � is
the intrinsic frequency and uD is the Doppler velocity
[in (4), kuD is a constant]; a is wave amplitude; c � �/k
is the phase speed; z � �h is the bottom depth; and �̃
is the surface wave elevation given by (4a) so that �̂ �
�̃ is the instantaneous surface elevation above mean sea
level. Also, D � �̂ � h is the mean water column depth.
Associated with (4c) is the location of material surfaces,

s � z � s̃, and s̃ � aFSS cos�, �4e�

where �s̃/�t � w̃. Notice that s(�̂) � �̂ � �̃ and s(�h) �
�h are the two bounding material surfaces.

From the dispersion relation �2 � gk tanhkD, obtain
ga/c � kac/tanhkD to convert coefficients of (4) to
those proportional to ka. In the derivation of the above
equations, as in most precursor derivations, wave slopes
ka are assumed to be small, as are the derivatives �a/�x,
�k/�x, and vertical current shear (properly nondimen-
sionalized on a representative k and �). Furthermore, a
major element in the derivation of (4)—and in the AJB
commentary—is that the bottom boundary condition is
�h/�x � 0. Terms additional to (4) that account for
bottom slope are proportional to (ka)c(�h/�x
). To ob-
tain this scaling, start with the linear irrotational wave
equations; then expand the potential function using the
small parameter � � �h/�x. The lowest-order solutions
are (4a)–(4c) and the next order that satisfies a nonzero
but small bottom slope yields the aforementioned scal-
ing. Further analysis, or indeed intuition, reveals that a
more descriptive parameter is (ka)[(�h/�x)/sinhkh]
since for deep water, the bottom slope should not be a
factor in the interaction of waves and currents. The
nonlinear equations discussed below might incur errors
on the order of (ka)4 for flat bottom applications and
errors on the order of (ka)2 [(�h/�x)/sinhkh]2 for shal-
low water with bottom topography.

Evaluating (3) using (4) in the two-dimensional, uni-
directional case results in

Sxx � kE�FCSFCC � FSCFSS�. �5�

3. The AJB calculation

Using the multimode National Technical University
of Athens (NTUA) model by Athanassoulis and Beli-
bassakis (1999) and Belibassakis et al. (2001), AJB pro-
vide an analytical–numerical calculation for the prob-
lem shown in their Fig. 3a; for kD � 1, the group ve-
locity and the wave energy changes are small. They
analyze their results according to
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[I use capital subscripts to distinguish (3) and (5) from
AJB’s definitions]. They claim that the “mean current
U and the Stokes drift are of the same order” and there-
fore, the two advective terms are an order of (ka)2

smaller than the last three terms of (9). I think that
argument is specious since, if the right side of (9) has
vertical structure, the left side must respond. Neverthe-
less the calculations yield the somewhat surprising re-
sult that
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, �7�

so that the “radiation stress” forcing has no vertical
structure (one presumes in the limit of an infinite num-
ber of modes); that is, there is very little wave–current
interaction except to effect wave setup. I do not know
how they separately evaluate the two terms on the left
of (7) (it is stated that SXX is the same as that in M03,
which I now believe is not correct!), but clearly this is
an interesting numerical experiment that deserves
analysis. One would like to see the evaluation of fluxes
in their more primitive form, as in (3).

4. The new result

Eq. (5) may be written

Sxx � kE
cosh2 k�z � h� � sinh2 k�z � h�

coshkD sinhkD
� kE

2
sinh2kD

�8�

so that its horizontal derivative has no vertical structure
and is balanced by �gD��̂ /�x.

5. Vertical momentum transport

An important finding in M03 and the revised version
is that surface wave stress or form drag p̃��̃/�x| ��0

is projected into the water column according to
p̃��̃/�x| ��0�FSSFCC/�� and thus competes with turbulent
momentum flux; this is contrary to (all?) surface
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boundary layer models (e.g., Mellor and Yamada 1982;
Large et al. 1994) that assume that vertical momentum
transport is entirely supported by turbulence. Sand-
wiched between discussions of bottom slope, AJB de-
scribe a phase-resolved solution to a wind-forced ocean
resulting in an exponentially growing wave field, which
corroborates the aforementioned M03 finding. Another
solution wherein surface form drag is balanced by vis-
cous dissipation will be part of a future paper on surface
boundary layers.

6. Conclusions

The commentary of AJB alerted me to a serious
problem with the derivation in M03. For example, w̃2

was missing from (3) and �s/�x � 0 at z � �h entered
into the derivation; this is inconsistent with (4c), which
is based on the boundary condition �h/�x � 0. Signifi-
cant unforced wave–current interaction occurred even
for deep water, which is physically unacceptable.

In the new formulation, since the Airy functions are
used, it is expected that errors in the equations dis-
cussed here will be on the order of (ka)2 [(�h/�x)/
sinhkh]2. However, when compared with the AJB shal-
low-water (kD ≅ 1) case, there is now agreement with
their result. The M03 difficulty with unforced wave–
current interactions for, say, kD ≅ 3 or larger, when
there should be none, is absent in the revised formula-
tion.
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